$\exp x = 1 + x + x^2/2 + x^3/6 + x^4/24 + \cdots$.
$\exp x = 1 + x + x^2/2 + x^3/6 + x^4/24 + \cdots$.
\begin{align*}
&
\Z\subset\Q\subset\R\subset\C
\\ &
\diag(a_1,\ldots,a_n) =
\begin{bmatrix}
a_1 & 0 & \cdots & 0 \\
0 & a_2 & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & a_n \\
\end{bmatrix}
\qquad (\text{diagonal matrix})
\\ &
a\mapsto\np{:}{a} \qquad \text{(the normal ordering of $a$)}
\end{align*}
Here \Z, \Q, \R, \C, \diag, and \np are defined in MyConfig.js.
\begin{align*} & \Z\subset\Q\subset\R\subset\C \\ & \diag(a_1,\ldots,a_n) = \begin{bmatrix} a_1 & 0 & \cdots & 0 \\ 0 & a_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & a_n \\ \end{bmatrix} \qquad (\text{diagonal matrix}) \\ & a\mapsto\np{:}{a} \qquad \text{(the normal ordering of $a$)} \end{align*}